April 200 # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL MEMORANDUM No. 1194 FORCE - AND PRESSURE - DISTRIBUTION MEASUREMENTS ON EIGHT FUSELAGES By G. Lange Translation of ZWB Forschungsbericht Nr. 1516, October 1941 NAC A Washington October 1948 # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL MEMORANDUM NO. 1194 FORCE- AND PRESSURE-DISTRIBUTION MEASUREMENTS ON EIGHT FUSELAGES* By G. Lange ### SUMMARY The present report deals with force- and pressure-distribution measurements on a number of fuselage forms of varying slendernoss ratio, varying rearward position of maximum thickness, and varying nose ratio. The effect of these parameters on the force and moment coefficients was determined. The linearity of the difference between the theoretical and experimental fuselage moments with the friction lift made it possible to indicate a neutral point and its travel with the different parameters. The pressure-distribution measurements yielded absolute values for the increase of velocity. A comparison with the theory indicated good agreement at small angles of attack, but considerable differences at greater angles of attack, where potential flow could no longer be assumed. ## INTROJUCTION The fuselagos were designed as bodies of revolution, the meridian lines of which were derived from the curve ABC of figure 1(a). This curve consists of a quarter-circle AB and a parabola BC, the axis of which is OB (the transition of the two curves is continuous up to the third order). Using the line AD as axis provides the maximum thickness at 41 percent chord. Using an inclined axis, as EC, through the center of the circle places the maximum thickness farther forward, although the curve is no longer a circular arc back to the position of maximum thickness. For greater rearward positions of the maximum thickness, parabolas of the fourth degree are added as indicated in the figure, for which, again, the circular arc forms the forward part back to the position of maximum thickness. ^{*&}quot;Kraftmessungen und Druckverteilungsmessungen an 8 Rümpfen," Zentrale für wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters (ZWB), Berlin-Adlershof, Forschungsbericht Nr. 1516, Oct. 24, 1941. The meridian curves for desired thickness ratios are obtained by compressing by a proportionality factor from the basic contours. The meridian curves so derived have a nondimensional nose radius $\frac{\rho/t}{(d/t)^2}$ that is independent of the thickness ratio and simply a function of the rearward position of the thickness. To make the shape of the nose independent of the rearward position and thickness ratio, that is, modify the normalized nose radius by a multiple ($2 \times \text{normal}$, $3 \times \text{normal}$) the ordinate values of the above meridian lines are multiplied by a thickening function that varies the ordinates at the nose substantially (flattening). Altogether eight fuselage forms were involved, three of which show the variation of one parameter while the other two are constant. Another fuselage has a curved mean line as partial experiment for a wing-nacelle combination to be measured later. The measured fuselages are reproduced in figure 1. The data for the individual parameters are given in tables I and II. All fuselages were 800 millimeters in length. They were made of improved wood. The surface was given a high polish. The pressure-distribution test stations, 29 altogether, lie on a meridian line. The pressure was conducted by means of brass tubes in the fuselage toward the rear end and connected by isoplastic hose to a multiple manometer. The fuselage zone disturbed by the hose is measured by a static survey apparatus. For the suspension of the fuselages at the wind-tunnel balance a round rod at one fourth of the length from the tip was attached normal to the test meridian section. The rotation for the angle-of-attack setting was effected in the plane of the meridian section in symmetrical air flow. For yawed flow of the test section at angle of attack $\alpha=0$ the fuselage is turned about a wind axis that lies in the plane of the test section. This way the pressures at four points of the circumference are measured with one section. The tests were run in the 1.2-meter tunnel of the DVL. The air-speed was 56.5 meters per second; the related Reynolds number is $Re = 3.1 \times 106$. # INTERPRETATION. The forces and moments from the three-component measurements were represented nondimensionally, the lift and drag coefficients in terms of volume $^{2/3}$ and the moment in terms of volume. $$c_a = \frac{A}{qv^2/3} = f(\alpha)$$ $$c_{W} = \frac{W}{\alpha \sqrt{2/3}} = f(\alpha)$$ $$c_m = \frac{M}{qV} = f(\alpha)$$ No jet correction was applied. The fuselage center line is the reference line for angle of attack α and angle of yaw β . For fuselage δ - curved mean line the axis of the axially symmetrical forebody is applicable. The reference point for the moments lies at one fourth of the fuselage length behind the nose. Tail-heavy moments are positive. The pressures p referred to dynamic pressure q are plotted against the fuselage center line. The theoretical moments are computed according to Vandrey (FB 1093). It is $$M = qf\left(\frac{d_{max}}{l}\right) \sin 2\alpha \frac{\pi}{l_{\downarrow}} \int_{0}^{l} d^{2} dx$$ $f\left(\frac{d_{max}}{l}\right)$ is a form factor which with the axial ratio of the maximum cross section is to be taken as parameter from the family of curves. The length 1 was taken not as the total length of the fuselage but as twice the distance from the nose to the position of maximum thickness, that is, as the length of the ellipsoid whose forward half forms this forward part of the fuselage. The rearward position x of the neutral point of the friction lift referred to the 1/4-point follows in accord with the definition of the coefficients as $$\frac{x_n}{l} = \frac{d_{c_m}}{d_{c_m}} = \frac{v^{1/3}}{l}$$ where $$c_{m_{remainder}} = c_{m_{theoretical}} - c_{m_{experimental}}$$ The maximum increase of speed at the body is computed from the measured pressures as $$\frac{v_{\text{max}}}{v_{\text{O}}} = \sqrt{\frac{p_{\text{O}} - p_{\text{min}}}{q} + 1}$$ ## RESULTS . The force measurements at fuselages 1 to 8 are reproduced in figure 2. They show the usual departure of the lift from linearity with the angle of attack and the instability of the fuselage moments. No breakeway of flow was observed throughout the employed angle-of-attack range. On fuselage 1 - D/L = 10 percent - it is noticed that stabilization results at $\alpha = 16^{\circ}$. The effects of thickness ratio, rearward position of maximum thickness, and nose radius are represented in figures 3, 4, and 5. The lift decreases toward greater D/L at all angles of attack, the drag increases with decreasing slenderness ratio, the test for D/L = 17.5 percent indicates a maximum value. The pitching moment is nearly constant. At $\alpha > = 16^{\circ}$ the moment of fuselage 1 - D/L = 10 percent - decreases substantially. The rearward position of the maximum thickness has no effect on the lift with rising percentage. A slight decrease is observed at $\alpha > 20^{\circ}$. The drag shows a distinct decrease with increasing rearward position of maximum thickness. The reason for it lies probably in the backward displacement of the transition point of the boundary-layer flow. At small angles the pitching-moment coefficient is little affected by the rearward position of maximum thickness, at greater angles of attack a positive extreme value occurs at 40 percent. At $\alpha = 20^{\circ}$ and 30° a decrease with the rearward position is observed. The effect of the nose radius is small. The drag increases slightly with increasing nose radius. From $\alpha = 10^{\circ}$ on the pitching moment shows a slight increase. Figure 6 indicates the relationship between the increase in frictional lift and the angle of attack for $\alpha = 0^{\circ}$. An increase in D/L is accompanied by an almost linear drop from 0.00891 at D/L = 10 percent to 0.0062 at D/L = 25 percent. Nose radius and rearward position of maximum thickness show little influence. A comparison of the measured moments with those obtained by potential theory (reference 1) discloses the much lower unstable value of the measurement. As explained in references 1 and 2, this is a consequence of the far back applied frictional lift. The moment of the lift referred to the 1/4-point as moment reference point is obtained by forming the difference between the theoretical and the measured moments. The linearity of this moment difference with the measured lift (fig. 7) enables a neutral point to be indicated as a function of the chosen parameters (fig. 8). The pressure-distribution data are reproduced in figures 9 to 16. Included for comparison with theory are the p/q curves for 1 to 3 and 7, as obtained by the method (reference 3) for computing the pressure distribution on ellipsoidal bodies and by the method of surface superposition (which is to be published in the near future). The calculation by reference 3 applies to ellipsoids, so that agreement in pressure distribution is to be approximately expected only in the forward part, while by the second method the parabolically tapered tail end is also taken into account. A comparison of the two calculations discloses only minor differences. The diagrams indicate good agreement between theory and test, particularly on the pressure side. The increases of velocity on the suction side are slightly less on the forward part. Greater differences are disclosed at high angles of attack, the suction side in particular fails to follow the theoretical pressure rise. Agreement fails also for the tail ond (see fuselage 7). The relationship between maximum increase of velocity, and the three parameters is seen in figures 17 and 18. Several extreme values which as intermediate points could not be taken from the measurement, were obtained by appropriate completion of the pressure-distribution curve. Increasing thickness ratio is, as known, accompanied by a rise in the increase of velocity, which at small angles of attack corresponds very well to the theoretical values (reference 3). At greater angles of attack the differences are considerable. Backward displacement of thickness is followed by reduction in the increase in velocity. In flow along the plane of measurement the effect of the nose radius is small at small angles, but the increase in velocity rises with increasing angle of attack as a consequence of the transitional curvature at the nose (especially on fuselage 6). For yawed flow of the test section the effect is, naturally, small. In general, the highest increases of velocity occur in symmetrical flow of test sections as compared to those in yawed flow. The fuselage with curved mean line shows no special characteristics. Translated by J. Vanier National Advisory Committee for Aeronautics ### REFERENCES - 1. Vandrey: Abschätzung des Rumpfeinflusses auf das Längsmoment eines Flugzeuges. FB 1093. - 2. Multhopp, H: Aerodynamics of the Fuselage. NACA TM No. 1036, 1941. - 3. Maruhn, K: Druckverteilung auf den gleichformig geradlinigbewegten 3-achsigen Ellipsoidkörper. FB 1174. - 4. Kawalki, K. H.: Theoretische Untersuchungen von Schnellflugprofilen, die aus Ellipsenprofilen entwickelt sind. FB 1224. TABLE I ORDINATES OF SPINDLE-SHAPED FUSELAGES | x in Fuse- percent lage 1 y in percent t | Fuse-
lage 2
y in
percent
t | Fuse-
lage 3
y in
percent
t | Fuse-
lage 4
y in
percent
t | Fuse-
lage 5
y in
percent
t | Fuse-
lage 6
y in
percent
t | Fuse-
lage 7
y in
percent
t | Fuse-
lage 8
y in
percent
t | Mean line
fuselage 9
y in
percent t | |---|--|---|---|---|---|--|---|---| | 0 0 1.25 1.2625 2.50 1.7500 5.00 2.4375 7.50 2.9375 10.00 3.3125 20.00 4.3250 30.00 4.8500 40.00 50.00 4.8375 60.00 4.3625 70.00 3.6625 80.00 2.6875 90.00 1.4000 95.00 0 | 0
2.1750
3.0625
4.2500
5.1125
5.7625
7.6125
8.5000
8.7500
8.7500
8.7500
2.5250
1.2875
0 | 0
3.1250
4.3125
6.0250
7.2875
8.2500
10.8625
12.1500
12.5000
12.0875
11.0000
9.2500
6.7500
3.6000
1.8250
0 | 6.6250
3.6250
5.0500
6.0500
6.7500
8.3400
8.7500
8.4400
7.6900
6.5600
5.2000
3.6400
1.8880
.9630 | 0
1.9380
2.7500
3.8650
4.6250
5.2700
7.0300
8.0500
8.5600
8.7500
8.5600
7.9400
6.6000
4.0150
2.3250 | 0
4.5650
5.6500
7.0100
7.9500
8.7500
10.9400
12.1500
12.5000
12.1250
11.0625
9.2500
6.7250
3.5750
1.8125
0 | 0
3.9990
5.0900
6.5700
7.6500
8.5400
10.8800
12.1125
12.5000
11.0125
9.2375
6.2750
3.5625
1.8000
0 | 0
4.0000
5.1000
6.5800
7.6700
8.5600
10.9200
12.1250
12.5000
12.1250
11.0750
9.3000
6.7250
3.5000
1.7500
0 | 0:
0
0
0
0
0
0
0
0
.5000
1.5250
3.1250
5.1625
7.4500
8.6875
9.8125 | 1/2 TABLE II VARIATION OF SPINDLE-SHAPE FUSELACES | No. | D/L
in percent | §D
in percent | ρ | Fuselage form | |--------------------------------------|--|--|--|--| | 1
2
3
4
5
6
7
8 | 10
17.5
25
17.5
17.5
25
25 | 40
40
40
30
50
40
40 | Normal Normal Normal Normal Normal 3x normal 2x normal 2x normal | Axially symmetrical Do. Do. Do. Do. Do. Do. Curved mean line | TABLE III . VOLUME OF FUSELAGES | Fuselage | γ _m 3 | v ^{2/3} m ² | v ^{1/3} (m) | |--------------------------------------|--|---|----------------------| | 1
2
3
4
5
6
7
8 | 0.002362
.006915
.014425
.006630
.007830
.014527
.014710 | 0.01774
.03629
.05940
.03555
.03942
.05955
.06015
.05660 | 0.197 | TABLE IV POLARS OF FUSELAGES 1 to 4 | α | Fu | selage 1 | | Fuselage 2 | | | | |--|---|---|---|---|---|---|--| | d. | c _{a.} c _w | | $c_{ m m}$ | C _B , | c _w | c_{m} | | | -10
-5
-1
0
1
2
4
6
10
15
20
25
30 | -0.1002
0521
0097
0
.0073
.0181
.0361
.0542
.0898
.1392
.2033
.2988
.4278 | 0.0254
.0172
.0147
.0141
.0144
.0155
.0197
.0228
.0290
.0561
.1018
.1678 | -0.129806010101 0 .0203 .0314 .0627 .0943 .1571 .2122 .2074 .1336 .0193 | -0.0808
0402
0078
0
.0087
.0177
.0355
.0495
.0827
.1199
.1661
.2192
.2814 | 0.0406
.0318
.0278
.0285
.0271
.0285
.0299
.0313
.0366
.0511
.0726
.1043 | -0.1644
0844
0163
0.0163
.0310
.0636
.0978
.1628
.2453
.3058
.3193
.3173 | | | | F | uselage 3 | | Fuselage 4 | | | | |--|---|--|---|---|--|--|--| | α | ca | c _W | cm | ca | C _W | c _m | | | -10
-10
-10
12
46
10
150
25
30 | -0.0672
0369
0076
0
.0067
.0092
.0245
.0347
.0599
.0930
.1362
.1852
.2474 | 0.0321
.0264
.0240
.0240
.0264
.0257
.0279
.0285
.0332
.0433*
.0669
.0972 | -0.1678
0873
0171
0
.0122
.0350
.0640
.1013
.1670
.2403
.2855
.3096
.3117 | -0.0895
0444
0087
0
.0122
.0232
.0417
.0598
.0907
.1298
.1693
.2234
.2832 | 0.0495
.0418
.0361
.0347
.0354
.0361
.0390
.0481
.0608
.0608
.0820 | -0.1586
0826
.0176
0
.0108
.0267
.0566
.0900
.1568
.2409
.3069
.3328
.3403 | | TABLE IVa POLARS OF FUSELAGES 5 to 8 | a | F | uselage 5 | | Fuselage 6 | | | | |---|---|---|---|---|---|---|--| | u. | ca | c _w | c _m | c _a | c _w | c _m | | | -10
-5
-1
0
1
2
4
6
10
15
20
5
30 | -0.0680
0390
0073
0.0127
.0267
.0323
.0534
.0840
.1214
.1609
.2099
.2624 | 0.0377
.0306
.0280
.0263
.0280
.0280
.0300
.0319
.0502
.0733
.1031
.1411 | -0.1799
0859
0172
0.0144
.0301
.0590
.0878
.1564
.2355
.2376
.3085
.3135 | -0.0641
0304
0059
0
.0056
.0120
.0236
.0350
.0583
.0947
.1380
.1388
.2458 | 0.0400
.0336
.0294
.0290
.0294
.0303
.0328
.0395
.0502
.0698 | -0.171808840180 0 .0179 .0374 .0742 .1109 .1835 .2590 .3080 .3415 .3540 | | | α | Fu | selage 7 | | Fuselage 8 | | | | |--|--|---|---|--|--|--|--| | | c _a | c _w | c _m | ca | c _w | cm | | | -10
-5
-1
0
1
2
4
6
10
15
20
25
30 | -0.0602
0294
0066
0.0055
.0118
.0239
.0368
.0598
.0598
.0941
.1372
.1851
.2426 | 0.0374
.0300
.0270
.0265
.0273
.0288
.0293
.0297
.0363
.0464
.0636
.0888 | -0.1705
0866
0178
0
.0170
.0340
.0688
.1043
.1775
.2511
.2983
.3280
.3356 | -0.0800
0431
0090
0084
.0044
.0113
.0270
.0442
.0748
.1148
.1580
.2170
.2792 | 0.0591
.0483
.0397
.0393
.0384
.0397
.0411
.0506
.0582
.0779
.1080 | -0.1183
0355
.0288
.0530
.0663
.0827
.1163
.1468
.2085
.2825
.3300
.3538
.3570 | | TABLE V LIFT, DRAG, AND MOMENT COEFFICIENTS AS FUNCTIONS OF THE PARAMETERS | | | Coef- | | Ane | gle of a | ttack | α | | |-------------|--|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | | | fici e nts | 0 | 2 | 6 | 10 | 50 | 30 | | io D/L | 10 percent
17.5 percent
25 percent | ca | | 0.0181
.0177
.0092 | 0.0542
.0495
.0347 | 0.0898
.0827
.0599 | 0.2033
.1661
.1362 | 0.4278
.2814
.2474 | | ness ratio | 10 percent
17.5 percent
25 percent | c _w | 0.0141
.0235
.0240 | .0155
.0285
.0257 | .0228
.0313
.0285 | .0290
.0366
.0332 | .1018
.0726
.0669 | .2410
.1470
.1325 | | Slenderness | 10 percent
17.5 percent
25 percent | $c_{ m m}$ | | .0314
.0310
.0350 | •0943
•0978
•1013 | .1571
.1628
.1670 | .2074
.3058
.2855 | .0193
.3173
.3117 | | se ED | 30 percent
40 percent
50 percent | ca | | .0232
.0177
.0195 | •0594
•0495
•0534 | .0907
.0827
.0840 | .1693
.1661
.1609 | .2832
.2814
.2624 | | thickness | 30 percent
40 percent
50 percent | c _w | •0347
•0285
•0263 | .0361
.0285
.0280 | •0390
•0313
•0319 | .0481
.0366
.0378 | .0820
.0726
.0738 | •1515
•1470
•1411 | | Percent | 30 percent
40 percent
50 percent | c _m | | .0267
.0310
.0301 | •0900
•0978
•0878 | .1568
.1628
.1564 | .3069
.3058
.2876 | •3403
•3173
•3135 | | ٥ | lx
2x
3x | c _a | | .0092
.0118
.0120 | •0347
•0368
•0350 | •0593
•0598
•0583 | .1362
.1372
,1380 | •2474
•2426
•2458 | | e radius | lx
2x
3x | C _W | .0240
.0265
.0286 | •0257
•0288
•0294 | .0285
.0297
.0328 | •0332
•0363
•0385 | .0669
.0636
.0698 | •1325
•1391
•1326 | | Nose | 1x
2x
3x | c _m | | •0350
•0340
•0374 | .1013
.1043
.1109 | •1670
•1775
•1835 | •2855
•2983
•3080 | •3117
•3356
•3540 | TABLE VI $\frac{dc_a}{d\alpha}$ as function of the parameters | D/L percent | c _a ' | |-------------|------------------| | 10 | 0.00894 | | 17.5 | .0077 | | 25 | .00635 | | ₹D percent | c _a † | |------------|------------------| | 30 | 0.00845 | | 40 | .0077 | | 50 | .00813 | | ρ | ca' | |----------------|----------------------------| | 1x
2x
3x | 0.00635
.0057
.00583 | TABLE VII DIFFERENCE MOMENTS WITH RESPECT TO LIFT AS FUNCTION OF THE PARAMETERS | Para-
meter a | | Fusel | age 1 | Fusel | age 2 | Fuselage 3 | | |-----------------------|---|--|--|--|--|--|--| | | | Δc _m | c _a | Δcm | c _a | $\Delta c_{ m m}$ | c _{a.} | | Slenderness ratio D/L | -10
-5
0 2
6
10
15
20
30 | -0.1722
0886
.0092
.0413
.1041
.1633
.2520
.3867
.7779 | -0.1002
0521
0
.0181
.0542
.0898
.1392
.2033
.4278 | -0.1126
0562
0
.0255
.0706
.1142
.1597
.2149
.3842 | -0.0808
0402
0
.0177
.0495
.0827
.1199
.1661
.2814 | -0.0724
0346
0
.0140
.0446
.0732
.1112
.1655
.2770 | -0.0672
0369
0
.0092
.0347
.0599
.0930
.1362
.2474 | | Para-
meter | a. | Fusclage 4 | | Fusela | ige 2 | Fuselage 5 | | | |----------------------|--|--|--|---|--|--|--|--| | | | $\Delta c_{ extbf{m}}$ | ce | △c _m | ca | Δc _m | c _{a.} | | | Percent thickness &D | -10
-5
0
2
6
10
15
20
30 | -0.0875
0424
0
.0235
.0596
.0893
.1191
.1561
.2834 | -0.0895
0444
0
.0232
.0598
.0907
.1298
.1693
.2832 | -0.1126
0562
0
.0255
.0706
.1142
.1597
.2149 | -0.0808
0402
0.0
.0177
.0495
.0827
.1199
.1661
.2814 | -0.1141
0635
0
.0299
.0908
.1376
.1945
.2650
.4310 | -0.0680
0390
0
.0195
.0534
.0840
.1214
.1609
.2624 | | TABLE VII - Concluded DIFFERENCE MOMENTS WITH RESPECT TO LIFT - Concluded | Para-
meter | α | Fusela | ge 3 | Fusela | age 7 | Fuselage 6 | | | |----------------|--|--|---|--|--|--|--|--| | | | Δc _m | c_{a} | ∆c _m | ca | Δc _m | ca | | | Nose radius p | -10
-5
0
2
6
10
15
20
30 | -0.0724
0346
0
.0140
.0446
.0732
.1112
.1655
.2770 | -0.0672
0369
0
.0092
.0347
.0599
.0930
.1362 | -0.0698
0354
0
.0151
.0418
.0628
.1005
.1537
.2731 | -0.0602
0294
0
.0118
.0368
.0598
.0941
.1372
.2426 | -0.0685
0336
0
.0117
.0352
.0568
.0926
.1440
.2547 | -0.0641
0304
0
.0120
.0350
.0583
.0947
.1380
.2458 | | TABLE VIII NEUTRAL POINT POSITION OF THE FRICTIONAL LIFT | D/L percent | <u>x</u>
t. | |-------------|----------------| | 10 | 0.3038 | | 17 •5 | .3362 | | 25 | .3338 | | ED percent | x
t | |------------|--------| | 30 | 0.2410 | | 40 | .3362 | | 50 | .4170 | | ρ | t t | |----|--------| | 1x | 0.3338 | | 2x | .3370 | | 3x | .3120 | INCREASE OF SPEED AS FUNCTION OF THE PARAMETERS AT TABLE IX ANGLE OF YAW $\beta = 0^{\circ}$ AGAINST ANGLE OF ATTACK α | | Parameter Parameter | | α=0 ⁰ | α=4° | α=10° | α=15° | α=20 ⁰ | a=25° | α=30° | |-----|--|------------------|------------------|-------|-------------------------|-------|-------------------|-------------------------|-------| | D/L | 10 percent
17.5 percent
25 percent | Prac-
tical | 1.058 | 1.068 | 1.068
1.087
1.138 | 1.136 | 1.200 | 1.264 | 1.333 | | | 10 percent
17.5 percent
25 percent | Theo-
retical | 1.071 | 1.074 | 1.065
1.101
1.139 | 1.140 | 1.190 | 1.251 | | | ξ.D | 30 percent
40 percent
50 percent | Prac-
tical | 1.058 | 1.068 | 1.112
1.087
1.068 | 1.136 | 1.200 | 1.264 | 1.333 | | Q | 1x
2x
3x | Prac-
tical | 1.094 | 1.100 | 1.138
1.121
1.182 | 1.175 | 1.245 | 1.285
1.324
1.430 | 1.402 | TABLE X INCREASE OF SPEED AS FUNCTION OF THE PARAMETERS AT $\alpha = 0 \quad \text{AGAINST ANGLE OF YAW} \quad \beta$ | | Parameter | , | β=0° | β=4 ⁰ | β=10 ⁰ | β=15 ⁰ | β=20 ⁰ | β=25 ⁰ | β=30° | |-----|---------------|-----------------|-------|------------------|-------------------|-------------------|-------------------|-------------------|-------| | | 10 percent | a.l | 1.030 | 1.040 | 1.068 | 1.105 | 1,.154 | 1.219 | 1.281 | | | 17.5 percent | Practical | 1.058 | 1.062 | 1.086 | 1.122 | 1.175 | 1.224 | 1.289 | | | 25 percent | Pra(| 1.110 | 1.113 | 1.140 | 1.174 | 1.217 | 1.265 | 1,326 | | T/a | ·10 percent . | 1. | 1.028 | 1.035 | 1.065 | 1.113 | 1.175 | 1.239 | 1.316 | | | 17.5 percent | eo-
tical | 1.070 | 1.075 | 1.103 | 1.143 | 1.194 | 1.250 | 1.320 | | | 25 percent | Theo-
retica | 1.110 | 1.114 | 1.140 | 1.170 | 1.211 | 1.260 | 1.322 | | | 30 percent | Practical | 1.078 | 1.086 | 1.113 | 1.145 | 1.200 | 1.250 | 1.311 | | ξD | 40 percent | | 1.058 | 1.062 | 1.086 | 1.122 | 1.175 | 1.224 | 1.289 | | | 50 percent | Pra | 1.048 | 1.052 | 1.086 | 1.130 | 1.190 | 1.252 | 1.328 | | a | lx | 린 | 1.110 | 1.113 | 1.140 | 1.174 | 1.217 | 1.265 | 1.326 | | | 2 x | ti ca | 1.094 | 1.104 | 1.130 | 1.160 | 1.210 | 1.265 | 1.320 | | | 3x | Practical | 1.104 | 1.113 | 1.130 | 1.166 | 1.216 | 1.270 | 1.328 | Figure 1a.- Basic profiles for different rearward positions of maximum thickness. Figure 1b.- Experimental fuselage forms 1 to 8. Figure 2.- Polars of force measurements for fuselages 1 to 8. Figure 3.- Effect of $\frac{D}{L}$ on lift, drag, and pitching moment. Figure 4.- Effect of ξ_D on lift, drag, and pitching moment. Figure 5.- Effect of nose radius ρ on lift, drag, and pitching moment. Figure 6.- Effect of $\frac{D}{L}$, ξ_D , and ρ on lift increase at $c_a' = 0^\circ$. Figure 7.- Effect of $\frac{D}{L}$, ξ_D , and ρ on different moment relative to lift. Figure 8.- Effect of $\frac{D}{L}$, ξ_D , and ρ on neutral point position of frictional lift. 26 NACA TM No. 1194 Figure 9.- Pressure-distribution record of fuselage 1 at $\beta = 0^{\circ}$ plotted against α . Figure 9a.- Pressure-distribution measurement of fuselage 1 at α = 0^{O} against β . Figure 10.- Pressure-distribution record of fuselage 2 at β = 0° plotted against α . Figure 10a.- Pressure-distribution measurement of fuselage 2 at $\alpha = 0^O \ \ \text{against} \ \ \beta \ .$ Figure 11.- Pressure-distribution measurement of fuselage 3 at $\beta = 0^O \ \ \text{against} \quad \alpha.$ Figure 11a.- Pressure-distribution measurement of fuselage 3 at α = 00 plotted against β . Figure 12.- Pressure-distribution measurement of fuselage 4 at $\beta=0^O$ against $\alpha.$ Figure 12a.- Pressure-distribution measurement of fuselage 4 at α = 0^{O} against $\beta.$ Figure 13.- Pressure-distribution measurement of fuselage 5 at β = 0^{O} against α . Figure 13a.- Pressure-distribution measurement of fuselage 5 at α = 0^{O} against β . Figure 14.- Pressure-distribution measurement of fuselage 6 at β = 0° against α . Figure 14a.- Pressure-distribution measurement of fuselage 6 at α = 0^{O} against $\,\beta$. Figure 15.- Pressure-distribution measurement of fuselage 7 at β = 0^{O} against $\alpha.$ Figure 15a.- Pressure-distribution measurement of fuselage 7 at $\alpha = 0^{\circ}$ against β . Figure 16.- Pressure-distribution measurement of fuselage 8 at $\beta = 0^{\circ}$ against α . Figure 16a.- Pressure-distribution measurement of fuselage 8 at $\alpha = 0^O \quad \text{against} \quad \beta \, .$ Figure 17.- Effect of $\frac{D}{L}$, ξ_D , and ρ on the maximum increase of speed at angle of yaw $\beta = 0$ plotted against angle of attack α . Figure 18.- Effect of $\frac{D}{L}$, ξ_D , and ρ on the maximum increase of speed at $\alpha = 0$ plotted against angle of yaw β .